
A Verified Implementation of Priority Monitors
in Java

Ángel Herranz and Julio Mariño
∗

Babel research group
Universidad Politécnica de Madrid

Abstract. Java monitors as implemented in the java.util.concurrent.
locks package provide no-priority nonblocking monitors. That is, threads
signalled after blocking on a condition queue do not proceed immediately,
but they have to wait until both the signalling thread and possibly some
of the others which have requested the lock release it. This can be a
source of errors (if threads that get in the middle leave the monitor in a
state incompatible with the signalled thread re-entry) or inefficiency (if
repeated evaluation of preconditions is used to ensure safe re-entry). A
concise implementation of priority nonblocking monitors in Java is pre-
sented. Curiously, our monitors are implemented on top of the standard
no-priority implementation. In order to verify the correctness of our so-
lution, a formal transition model (that includes a formalisation of Java
locks and conditions) has been defined and checked using Uppaal. This
model has been adapted to PlusCal in order to obtain a formal proof in
TLA independent of the number of threads.

Keywords: Monitors, Java, model checking, priority, nonblocking, TLA,
PlusCal.

1 Introduction

A model-driven approach to the development of concurrent software [7] advo-
cates the use of high-level, language-independent entities that can be subject to
formal analysis (e.g., to early detect risks due to concurrency in reactive, critical
systems) and that are later translated into a concrete programming language
by means of safe transformations. This, rather than the unrestricted use of the
concurrency mechanisms in the target language, aims at improving portability
(always a must in embedded systems) and preventing hazards due to the use
of error-prone or poorly documented primitives. We have used this approach
for teaching concurrency for more than fifteen years at our university, first us-
ing Ada95 [3], and now Java, which is certainly lacking in many aspects when
compared to the former.

∗
Authors partly funded by grants DESAFIOS10 (TIN2009-14599-C03-00) from the
Spanish Ministry of Science and Innovation, PROMETIDOS (P2009/TIC-1465)
from the Madrid Regional Government and COST Action IC0701 on Formal Verifi-
cation of Object Oriented Software.

CADT Counter
ACTION Inc: C Type[io]
ACTION Dec: C Type[io]

SEMANTICS
TYPE: C Type = Z
INVARIANT: ∀ c ∈ C Type.c ≥ 0
INITIAL(c): c = 0

CPRE: True
Inc(c)
POST: cout = cin + 1

CPRE: c > 0
Dec(c)
POST: cout = cin − 1

class Counter {
final Lock mutex =

new ReentrantLock(true);
final Condition strictlyPos =

mutex.newCondition();
private int c = 0;
public void inc() {

mutex.lock();
c++;
// signal some pending dec
strictlyPos.signal();
mutex.unlock();

}
public void dec() {

mutex.lock();
// check the CPRE now
if (c == 0) {

try {strictlyPos.await();}
catch(Exception e) {}

}
// if we are here, that means
// that c > 0
c−−;
// it CAN be proved that
// no more signals are needed
mutex.unlock();

}
}

Fig. 1. A minimal example showing the risks of Java’s no-priority locks and conditions.

Indeed, the early mechanisms for thread synchronization provided by Java
were so limited that one of the pioneers of concurrent programming, Brinch
Hansen, wrote a famous essay [6] alerting on the risks of their usage. As a
response to these adverse reactions, more powerful concurrency mechanisms were
introduced in later versions of Java, although without being explicitly presented
as realizations of the classical ones.

In this work we will focus on the locks & conditions library (java.util.
concurrent.locks), that can be seen as an attempt to implement monitors
(actually, Brinch Hansen’s contribution) in Java. Figure 1 shows an (apparently
correct) implementation of a shared resource, specified in a formal notation,
using the aforementioned library. On the left side of the figure, a shared counter
is specified as a kind of abstract data type with implicit mutually exclusive access
and an interface that specifies the only operations (Inc and Dec) that can be
used to modify its state. Moreover, these actions are pure and transactional.
In this case, we also state the invariant that the counter cannot be negative
at any time, and specify the conditional synchronization (CPRE, concurrency
precondition) for Dec, that ensures the invariant after the execution of any of
the two actions.

To the right, we see an implementation of the resource specification as a Java
class using locks and conditions. Class Counter encapsulates an integer variable
c to represent the counter. Also, a lock object mutex is used to ensure execution
of the actions in mutual exclusion. Finally, a condition object strictlyPos is
used to implement the conditional synchronization of threads invoking dec(),
i.e., to put them to sleep when the action is invoked with the counter set to 0.

The code has been written following the principle that only 0 or 1 await()
calls are executed during an action, and the same applies to signal(). This
coding guideline really pays off when applied to concurrency problems of greater
significance. Basically, it reduces the context switching points inside the code
for an action to (at most) one (the execution of await()), dividing it into two
sequential fragments, which facilitates formal reasoning. It is the responsibility
of the signalling thread (in this case, any thread executing Inc) to ensure that
the signalled thread wakes up in a safe state. In this case, there is nothing to
check, as strictlyPos.signal() is placed right after incrementing the counter
and thus, if the signalled thread resumes execution right after the signalling one
executes mutex.unlock() it is safe to decrement the counter. That justifies the
comment above the line containing “c−−;”.

Unfortunately, this code is unsafe. Why? The reason is that Java’s imple-
mentation is an example of no-priority signalling [2]. That means that threads
signalled after blocking on a condition queue do not proceed immediately, but
they have to wait until both the signalling thread and also other threads that
might have requested the lock release it. In other words, when the decrementer
thread resumes execution it could be the case that other decrementer thread was
already queued on mutex and set the counter to 0 right before. Moreover, given
that the execution of the inc() and dec() methods takes very little time, the
probability that this scenario happens is relatively low, which makes this the
kind of error that can go unnoticed for thousands of runs.

The official documentation for the Condition class leaves considerable room
for the operational interpretation of the await() and signal() methods in fu-
ture implementations and, in fact, the no-priority behaviour is not really implied
by the natural language specification of the API. There is, however, a generic
recommendation to enclose the calls to await() inside invariant-checking loops,
motivated by the possibility of spurious wakeups. Although the use of such loops
can be seen as a defensive coding technique that can avoid hazards in general, we
think that forcing the application programmer to use them can be quite unsat-
isfactory in many situations as testing the concurrency precondition repeatedly
can increase contention of certain concurrent algorithms intolerably.

The use of the 0-1 coding scheme allows for low-contention, deterministic
implementations of shared resources. Also, in [2] the reader can find a classifi-
cation and comparison of many monitor variations, concluding that, in general,
priority implementations are less error-prone. With this in mind, we decided to
reuse as much from the existing reference implementation of condition objects
and turn them into a concise, priority implementation of monitors. Our proposal
is described in the following section.

1 package es.upm.babel.cclib;
2 import java.util.concurrent.locks.Lock;
3 import java.util.concurrent.locks.ReentrantLock;
4 import java.util.concurrent.locks.Condition;
5
6 public class Monitor {
7 private Lock mutex = new ReentrantLock(true);
8 private Condition purgatory = mutex.newCondition();
9 private int inPurgatory = 0;

10 private int pendingSignals = 0;
11
12 public Monitor() {
13 }
14
15 public void enter() {
16 mutex.lock();
17 if (pendingSignals > 0 | | inPurgatory > 0) {
18 inPurgatory++;
19 try { purgatory.await(); }
20 catch (InterruptedException e) { }
21 inPurgatory−−;
22 }
23 }
24
25 public void leave() {
26 if (pendingSignals == 0 && inPurgatory > 0) {
27 purgatory.signal();
28 }
29 mutex.unlock();
30 }
31
32 public Cond newCond() {
33 return new Cond();
34 }

inner class Cond goes here.

65 }

Fig. 2. Java source for priority monitors (class Monitor).

2 Implementing Priority Monitors with Java’s
No-priority Monitors

Figures 2 and 3 show a stripped-down version of the source code for Monitor.java,
our implementation of priority monitors. Due to space limitations, comments and
exception managers have been omitted. A full version, including comments and a
couple of extra operations can be found at http://babel.ls.fi.upm.es/software/cclib.

In addition to the Monitor class, Monitor.java defines the Cond class. Both
classes are intended to be a replacement for the original Lock and Condition
classes. Figure 3 contains the code for class Cond, and the rest of Monitor.java is

37 public class Cond {
38 private Condition condition;
39 private int waiting;
40 private Cond() {
41 condition = mutex.newCondition();
42 waiting = 0;
43 }
44
45 public void await() {
46 waiting++;
47 if (pendingSignals == 0 && inPurgatory > 0) {
48 purgatory.signal();
49 }
50 try { condition.await(); }
51 catch (InterruptedException e) { }
52 pendingSignals−−;
53 }
54
55 public void signal() {
56 if (waiting > 0) {
57 pendingSignals++;
58 waiting−−;
59 condition.signal();
60 }
61 }
62 }

Fig. 3. Java source for priority condition variables (class Cond).

shown in Figure 2. However, this separation is a mere convenience for displaying
the code: the implementation of class Cond requires access to the state variables
in class Monitor.

The functionality provided by the class is similar to that of locks and con-
ditions. Method enter() provides exclusive access to the monitor, like method
lock() in class Lock. If one thread got exclusive access to a monitor object m,
susbsequent calls to m.enter() from other threads will force these to wait in m’s
queue. The monitor is released by invoking m.leave() (analogous to unlock()).
If there are threads waiting at m’s entry queue, executing m.leave() will give
control to the first thread in the queue.

Condition queues associated with m are created by invoking m.newCond()
rather than calling the constructor of class Cond. This is similar to the behaviour
of newCondition() in class Lock. Instances c, c′. . . of class Cond associated with
a given monitor object m are managed like condition variables. A thread that
invokes c.await() after m.enter() is blocked unconditionally and put to wait
in a queue associated with c. Also, executing c.await() releases m, so that other
threads can get exclusive access to m by executing m.enter(). As in the case of
leave(), if there are threads waiting at m’s entry queue, executing m.await()
will give control to the first thread in queue.

A thread that executes c.signal() after getting exclusive access to m will
continue executing (signal-and-continue policy) but it is guaranteed that if there
is a thread waiting on c, it will be awakened before any process waiting on
m’s entry queue. This is where the behavior differs from that of signals in the
standard locks and conditions package, where signalled threads are requeued at
the tail of the lock’s entry queue.

The implementation is done on top of the existing implementation of locks
and conditions, without reimplementing their functionality say, by using low-
level concurrency mechanisms such as semaphores, nor accessing the Java run-
time in order to “magically move” threads from one queue to another.

The technique used to simulate the effect of moving signalled threads from
the head of the condition queue to the head (rather than the tail) of the moni-
tor’s entry queue is to flush the contents of the latter until the signalled thread
becomes the first. This is achieved by letting some threads get in the monitor,
but only to make them await in a special condition queue devised for that pur-
pose, and which we call “the purgatory”. Of course, these threads will have to
be eventually awakened and allowed to get access to the monitor in the right
sequence. As they have been moved to a condition variable, signalling them will
bring them back to the lock’s entry queue, so a little care is needed to ensure that
the whole system progresses appropriately. Two global counters are responsible
for this.

Variable inPurgatory counts the number of threads that have been sent to
the purgatory condition queue and have not been given access to the monitor
yet – even if they have already been signalled. Variable pendingSignals counts
how many threads that have been signalled (in regular condition variables, not
purgatory) are yet waiting for re-entry.

Method enter() starts executing lock() on the monitor’s internal lock
object, called mutex (line 16). However, if pendingSignals is not zero, this
thread should give way to some signalled thread that was waiting for monitor
re-entry later in the queue associated with mutex, and thus has to execute a
purgatory.await(), updating counter inPurgatory before and after (lines 17–
22). The same is done if other threads have been sent to the purgatory earlier
and have not re-entered yet (inPurgatory > 0).

The implementation of method leave() is quite symmetric. It ends by in-
voking mutex.unlock() (line 29), but before, a chance to re-gain access to the
monitor must be given to threads moved to the purgatory (line 27), only if there
are no signalled threads queued for monitor re-entry (line 26).

Method newCond is implemented just by invoking the standard constructor
of class Cond (line 33). Association to a given monitor object is just implicit in
the visibility of the monitor’s state variables that the Cond object has. A Cond
object is basically a pair of a Condition object associated with mutex and a
counter waiting that keeps track of the number of threads waiting on it (lines
38–43).

The core of method await() is the corresponding call on its condition object
(line 50) but, before, counter waiting is incremented (line 46) and the right to

execute inside the monitor is given to threads in the purgatory only if there are
no pending signals (lines 47–49). Finally, if the thread that has invoked await()
reaches line 52, the whole signalling procedure has been successful including
monitor re-entry, so pendingSignals must be decremented accordingly.

Finally, method signal() checks whether the queue size is nonzero (line
56) and if so increments pendingSignals (line 57), as monitor re-entry for the
signalled thread will be incomplete, decrements waiting (line 58) and executes
signal() on the condition object (line 59). Executing signal() on an empty
queue has no effect.

Although the implementation of the Monitor and Cond classes is quite con-
cise, the interplay between the different threads and synchronization barriers,
governed by the different counters is, admittedly, complex and hard to follow.
After testing the class on a number of applications specifically devised to force
errors related to incoming threads getting in the way of signalled ones, we still
felt that a more convincing proof of the correctness of our implementation was
necessary.

3 A Formal Model of Java Locks and Conditions

As a first step towards a formal argumentation of the correctness of our imple-
mentation of priority monitors, we decided to define a transition model for the
underlying implementation of locks and condition variables.

The model has been defined as a network of (parametric) automata in Up-
paal [1]: one automaton for modelling the concurrency mechanism, i.e., the lock
object and its associated conditions, and one automaton per thread that makes
use of it. While we give a complete formalization of the concurrency mechanism,
unrelated thread code is abstracted away by just showing the interaction with
the lock and the conditions.

Each thread has its own thread identifier, pid , and so do condition variables
(cid). All interaction between the different automata takes place via communi-
cation channels:

– lock[pid] is the channel the thread pid uses when it needs to lock the lock.
– await[cid][pid] is the channel the thread pid uses when it needs to wait in

condition cid .
– signal [cid][pid] is the channel a thread uses to signal condition cid .
– lock granted[pid] is the channel the concurrency mechanism uses to grant a lock

to the thread pid .
– lock[pid] is the channel the thread pid uses to unlock the lock.

Let’s start with the abstract model for the threads, since, in our view, it is
the most didactic way to present the whole model.

3.1 Modelling the Threads

Each thread has its own thread identifier, pid , and the model of a thread is the
automaton (actually an Uppaal template parametrised by thread identifiers)
shown in Figure 4.

Awaiting

HasTheLock

LockingOut

cid : cid_t
signal[cid]!

lock_granted[pid]?

cid : cid_t
await[cid][pid]!

unlock[pid]!

lock_granted[pid]?

lock[pid]!

Fig. 4. State model for a Java thread invoking operations on locks.

The automaton has four locations that represent the state of a thread with
respect to a lock:

– Out is the location that represents that the thread neither has got the lock
nor is waiting in a condition. It is an abstract representation of any program
point of any arbitrary thread outside of the monitor.

– HasTheLock is the location that represents that the thread has the lock. It
is another abstract representation, this time, of any program point of any
arbitrary thread in the monitor.

– Locking is the location that represents that the thread is blocked while waiting
for the lock to be granted to it. From the monitor perspective, it is trying
to enter the monitor.

– Awaiting is the location that represents that the thread is blocked in a condi-
tion. From the monitor perspective, it is waiting for a signal that allows it
to re-enter the monitor.

Edges are extremely simple. The idea behind this simplicity is trying to con-
taminate the thread models as little as possible. They do not involve access to
variables, neither global nor local so adapting the model to any particular thread
is immediate. Let us see the intended meaning of the actions at the edges:

– Out−Locking with action lock[pid]!, a send-action that indicates that the thread
needs the lock. As we will see, the co-action (lock[pid]?) is continuously en-
abled in the model of the mechanism.

– Locking−HasTheLock with action lock granted[pid]?, a receive-action that indicates
the thread is allowed to get the lock. The co-action will occur when the thread
pid has the top priority to lock the monitor.

– HasTheLock−Awaiting with action await[cid][pid]!, a send-action that indicates
that the thread waits in the condition variable cid .1

– Awaiting−HasTheLock with action lock granted[pid]?, a receive-action that indi-
cates the thread is allowed to re-take the lock (re-enter the monitor).

1 In Uppaal, expressions such as cid : cid t non-deterministically bind the identifier
cid to a value in the range cid t . It can be understood as an edge replicator.

Locked

Unlocked

cid : cid_t
signal[cid]?
requeue(cq[cid],lq)

cid : cid_t, pid : pid_t
await[cid][pid]?

push(cq[cid],pid)

pid : pid_t
unlock[pid]?

pid : pid_t
lock[pid]?
push(lq,pid)

pid : pid_t
lock[pid]?
push(lq,pid)

pid : pid_t
size(lq) > 0 & first(lq) == pid
lock_granted[pid]!
pop(lq)

Fig. 5. State model for a Java lock.

– HasTheLock−Out with action unlock[pid]!, a send-action that indicates that the
thread releases the lock (leave the monitor).

– HasTheLock−HasTheLock with action signal [cid]!, a send-action that indicates
that the thread signals a thread on the condition variable cid .

3.2 Modelling Java Locks and Conditions

The model of a lock object and its associated condition variables is shown in
Figure 5. The main task of the automaton is to keep track of threads by listening
for their actions (on lock, await and signal channels) and responding appropriately
(on channel lock granted).

To keep track of the threads, the automaton defines two queues:

– A bounded queue of thread identifiers, lq (lock queue), that represent the
queue for getting the lock.

– A bounded queue per condition cid of thread identifiers, cq[cid] (condition
queue of cid), that represent the condition variable queues.

The automaton has two locations, Locked and Unlocked, that represent that the
lock is locked by a thread or unlocked, respectively.

Most logic is encoded in the edges. To explain this logic we will explore the
actions that fire them. We have to take into account that edges are indexed by
thread identifiers (pid) and condition variable identifiers (cid).

– Edges with the receive-action lock[pid]? do not change locations, are always
enabled and their assignments just push the thread identifier index pid in
the access queue lq.

– The edge Locked−Unlocked with the receive-action await[cid][pid]? is always en-
abled and the assignment just pushes the thread identifier index pid in the
condition variable queue cq[cid].

Locked

Unlocked

cid : cid_t
signal[cid]?
remember_signal(cq[cid]),
requeue(cq[cid],lq)

cid : cid_t, pid : pid_t
await[cid][pid]?

push(cq[cid],pid),
just_entered := false,
reset_signal()

pid : pid_t
unlock[pid]?
just_entered := false,
reset_signal()

pid : pid_t
lock[pid]?
push(lq,pid)

pid : pid_t
lock[pid]?
push(lq,pid),
just_entered := false

pid : pid_t
size(lq) > 0 & first(lq) == pid
lock_granted[pid]!
locking_pid := pop(lq),
just_entered := true

Fig. 6. An instrumented version of the Lock automaton.

– The edge Locked−Locked with the receive-action signal [cid][pid]? is always en-
abled and the assignment just moves the first thread identifier index pid
from the condition queue cq[cid] to the access queue lq.

– The edge Unlocked−Locked with index pid is just enabled when the access
queue lq is not empty and its first thread identifier is pid . The send-action of
this edge is lock granted[pid]!, granting the access to the thread with identifier
pid .

– The edge Locked−Unlocked with the receive-action unlock[pid]? is always enabled
and does not modify any queue.

The full code for the declarations and auxiliary method definitions in this model
can be found under http://babel.ls.fi.upm.es/software/cclib.

The natural step after defining this model is to check some properties on it.
The first one is the correctness property: mutual exclusion. Encoding mutual
exclusion in the Uppaal subset of CTL, the Computational Tree Logic [5], is
easy:

A2 (∀ (pid1 : pid t) (
∀ (pid2 : pid t) (

(Thread(pid1).HasTheLock ∧ Thread(pid2).HasTheLock)⇒ pid1 = pid2)))

That is, whether for all paths (A path quantifier), invariantly (2 modality), if
two threads got the lock it is because they are the same thread. The tool finds
the property correct for models of various sizes.

3.3 Instrumenting the Model

Nevertheless, for us, the most relevant property (correctness aside) is whether
signalled threads resume their execution inside the monitor immediately after
the signalling thread leaves. We will call this the characteristic property. As a

sanity check, we woud like to check that this property does not hold for the
model just presented.

However, stating this property in the query language supported by Uppaal is
not possible. Basically, the query language is a subset of CTL that only allows
temporal modalities as the topmost symbol of formulae, but a query representing
the characteristic property for our model would require to nest modal operators.

A workaround for this limitation consists in instrumenting the model so that
part of its recent history is somehow remembered. This way, we can encode certain
temporal properties as state predicates, thus reducing the number of temporal
operators required to express the characteristic property.

Again, we avoid contaminating the thread model and Figure 6 shows the
resulting lock automaton (changes bold-faced). Basically, the system has new
global variables to store:

– whether the nth thread that got access to the lock did execute an effective
signal on some condition, and

– the identifier for the thread that received the signal (if any).

The first is done thanks to a new variable just signalled , and the second with
variable thread just awakened. Both of them are set by operation remember signal
while operation reset signal resets just signalled once the thread leaving the monitor
coincides with thread just awakened. Also, the automata for threads are slightly
constrained so that at most one signal is allowed per lock.

With these changes, the characteristic property is violated iff the (n + 1)th
thread in gaining access to the lock is different from the thread signalled by
the nth thread. In order to avoid having generation counters in the model, we
have added yet another boolean variable just entered to represent that the last
transition to take place in the lock automaton is precisely the one that follows a
lock granted message. Violation of the characteristic property can then be encoded
in the Uppaal query

E3 (just entered ∧ just signalled ∧ locking pid 6= thread just awakened).

That is, whether there is some path (E path quantifier) that eventually leads (3
modality) to a state in which the aforementioned proposition holds. The tool
finds an example for 3 threads almost immediately, as expected.

4 Verifying our Implementation

Since our implementation of priority monitors is based on the existing lock and
conditions model:

– The lock mutex is represented by the lock model in Figure 5.
– The condition purgatory is represented by the condition identifier purgacid

(a symbolic name for referring to condition identifier 0).
– Integers inPurgatory and pendingSignals are represented by int Uppaal

variables with the same name (inPurgatory and pendingSignals).

Actual_Signal

Reentering

Actual_Await

Leave_End

Leave_Begin

In3

Signal_End

Signal_Begin

In2

Await_End

Await_Begin

ToHeaven

Check_PriorityLocking

In1

Enter_End

Enter_Begin

Out

unlock[pid]!

pendingSignals > 0
|| inPurgatory == 0

pendingSignals == 0
&& inPurgatory > 0

signal[purgacid]!

signal[thecid]!

waiting[thecid] > 0
pendingSignals++,
waiting[thecid]--

waiting[thecid] == 0

cid : cid_t
cid != purgacid
thecid := cid

lock_granted[pid]?

await[thecid][pid]!

pendingSignals == 0
&& inPurgatory > 0

signal[purgacid]!

pendingSignals > 0
|| inPurgatory == 0

pendingSignals--

cid : cid_t
cid != purgacid
thecid := cid,
waiting[thecid]++

pendingSignals == 0
&& inPurgatory == 0

lock_granted[pid]?
inPurgatory--

await[purgacid][pid]!

pendingSignals >0
|| inPurgatory > 0

inPurgatory++

lock_granted[pid]?lock[pid]!

Fig. 7. State model for a thread using the Monitor class operations.

– The implementation of the methods enter, leave, await, and signal have
been inlined in the thread model (Figure 7).

The automaton in Figure 7 models a very general thread that enters the
monitor, then executes several await calls (possibly 0), then executes one, at
the most, signal call, and finally leaves the monitor. To make the thread model
easier to follow, most of the locations have been named according to fragments
of the source code in Monitor.java. For example, execution of method enter()
starts at location Enter Begin and finishes at location Enter End and includes the

2 3 4 5 6

1: 0.01 0.02 0.18 6.38 274.03
2: 0.01 0.03 1.14 87.62
3: 0.01 0.06 3.90
4: 0.01 0.10 9.78

locks & conditions

2 3 4 5 6

1: 0.00 0.03 0.50 17.06 442.26
2: 0.01 0.08 3.35 214.99
3: 0.02 0.18 12.06
4: 0.02 0.39 35.70

priority monitors

Table 1. Times spent in checking the mutual exclusion property.

3 4 5 6

1: 0.00 0.02 0.08 0.40
2: 0.01 0.04 0.16 0.82
3: 0.01 0.08 0.32 1.48
4: 0.03 0.11 0.55 2.40

locks & conditions
(property violated)

3 4 5 6

1: 0.03 0.36 11.18 450.73
2: 0.07 2.43 152.99
3: 0.16 9.42
4: 0.30 24.95

priority monitors

Table 2. Times spent in checking the characteristic property.

possibility of a short excursion to the purgatory. The same scheme has been used
to represent all the methods.

4.1 Experimental Results

The experimental results shown in this section have run on the instrumented
models of the Java lock and conditions and of our priority monitor implementa-
tion. The model of the threads are those presented in previous sections except
for the elimination of the main loop2 (otherwise the state explosion makes the
tool useless).

We have checked the correctness property for both models (lock and condi-
tions and monitor) with the expected result: the models satisfy mutual exclu-
sion. Table 1 shows execution times (in seconds) given different numbers of client
threads (indicated at the top) and condition queues (indicated on the left).3

The state model for priority monitors has been instrumented following the
ideas in Sec. 3.3. Table 2 shows execution times for checking the characteristic
property for both instrumented models.

In addition to the characteristic property, we have also checked the property
that threads sent to the purgatory eventually enter the monitor, as an imple-
mentation that would keep them blocked forever would satisfy the characteristic
property trivially. The results are shown in Table 3.

2 Represented by edge Leave End-Out in Figure 7.
3 Figures obtained on a Dual-Core AMD Opteron(tm) Processor 2218 @ 2.6GHz,

RAM 8GB, running the Academic version of Uppaal 4.1.7 (rev. 4934) running a
Debian distro with kernel Linux 2.6.39-bpo.2-amd64 SMP.

2 3 4 5

1: 0.01 0.02 0.42 14.04
2: 0.01 0.07 2.53 169.37
3: 0.01 0.15 9.49
4: 0.01 0.30 27.52
5: 0.02 0.58 64.18

Table 3. Times spent in checking that the stay in the purgatory is transitory.

5 Towards a Mathematical Proof

In order to prove our implementation of monitors correct for an unbounded
number of threads we have encoded it in TLA, the temporal logic of actions [8],
a logic for specifying and reasoning about concurrent systems. This has been
done in two steps:

– A straightforward, manual, transformation of the Java code to PlusCal [10],
an algorithm description language specially suited for concurrency.

– An automatic transformation of the PlusCal descriptions into TLA+ [9], a
complete specification language based on TLA, using The TLA Toolbox [12],
which allow both model-checking finite systems4 but also symbolic proof.

The PlusCal code is shown in figures 8–10. Figure 8 contains the specification
of the original locks and conditions library as a set of four procedures which can
be invoked by concurrent processes. Analogously to the Uppaal model, locks
and conditions are modelled as FIFO queues (“lq” and “cq[cid]”). The await
statements (used at labels java lock blocked and java await blocked) ensure the
synchronization behaviour. Labels in PlusCal specifications are not only an aid
to the reader, but also help structuring the resulting TLA spec, and will be used
for reasoning about the system behaviour.

The direct translation of our monitors is shown in Figure 9. The only relevant
change is that part of the code (see labels cclib leave resetlastsignal and cclib
signal setlastsignal) manages an extra variable (lastSignal) used to ease stating
and proving the characteristic property, similarly to the instrumentation in the
Uppaal model. Variable lastSignal is a tuple with two process identifiers. Initially,
and when no signal is in progress, lastSignal = 〈0, 0〉 (0 is a non-valid process
identifier). Otherwise, it records the pids of the signaler and signaled processes.

Finally, a system of several processes to reason about the behaviour of our
algorithm is defined in Figure 10. These clients enter the monitor (proc enter),
execute 0 or 1 calls to await (proc await), execute 0 or 1 signal (proc signal),
and then leave the monitor (proc leave).

Theorem 1 (Characteristic property). When a process performs a signal
on a nonempty condition (label cclib signal setlastsignal in Figure 9), the next

4 All theorems in this section have been model-checked with TLC, the TLA+ model-
checker, prior to the symbolic proof.

procedure java lock() {
java lock begin: lq := Append(lq,self);
java lock blocked: await self = Head(lq);
java lock end: return;

}
procedure java unlock() {

java unlock begin: lq := Tail(lq);
java unlock end: return;

}
procedure java await(wcid) {

java await begin: cq[wcid] := Append(cq[wcid],self);
java await unlocking: lq := Tail(lq);
java await blocked: await Len(lq) > 0 ∧ self = Head(lq);
java await end: return;

}
procedure java signal(scid) {

java signal begin: if (Len(cq[scid]) > 0) {
java signal requeue: lq := Append(lq,Head(cq[scid]));

cq[scid] := Tail(cq[scid]);
};

java signal end: return;
}

Fig. 8. PlusCal specification of Java locks and conditions.

process to enter the monitor (label proc in in Figure 10) is the signaled one, and
not an “opportunist” process:

∀ pid ∈ ProcSet : pc[pid] = “proc in”⇒ lastSignal [2] ∈ {0, pid}

Theorem 2 (Purgatory is transitory). Every process sent to the purgatory
(cq[0]) eventually enters the monitor (label proc in in Figure 10):

∀ pid ∈ ProcSet : (InPurgatory(pid) ; pc[pid] = “proc in”)

(The temporal formula φ; ψ means that every state satisfying φ will eventually
progress to another in which ψ holds.)

Theorem 3 (Enter call order is preserved). No process (pid2) entering the
monitor (label java lock blocked in Figure 8) can overtake5 any process (pid1)
sent to the purgatory:
∀ pid1, pid2 ∈ ProcSet :(Member(cq [0], pid1) ∧ pc[pid2] = “java lock blocked”)

; (∧ Member(order , pid1) ∧ Member(order , pid2)
∧ Index (order , pid1) < Index (order , pid2))

The proof of the first theorem is lengthy due to the number of cases, but
relatively straightforward, as is an invariant maintained by all transitions, and

5 Now the use of the instrumental queue order becomes apparent.

procedure cclib enter() {
cclib enter begin: call java lock();
cclib enter check priority: if (pendingSignals > 0 ∨ inPurgatory > 0) {

inPurgatory := inPurgatory + 1;
call java await(0);

cclib enter toheaven: inPurgatory := inPurgatory - 1;
};

cclib enter end: return;
}
procedure cclib leave() {

cclib leave begin: if (pendingSignals = 0 ∧ inPurgatory > 0) {
cclib leave saveit: call java signal(0);

};
cclib leave resetlastsignal: if (lastSignal[1] 6= self) { lastSignal := 〈0, 0〉; };
cclib leave unlocking: call java unlock();
cclib leave end: return;

}
procedure cclib await(cclwcid) {

cclib await begin: waiting[cclwcid] := waiting[cclwcid] + 1;
if (pendingSignals = 0 ∧ inPurgatory > 0) {

cclib await saveit call java signal(0);
};

cclib await actualawait: call java await(cclwcid);
cclib await reentering: pendingSignals := pendingSignals - 1;
cclib await end: return;

}
procedure cclib signal(cclscid) {

cclib signal begin: if (waiting[cclscid] > 0) {
cclib signal actualsignal: pendingSignals := pendingSignals + 1;

waiting[cclscid] := waiting[cclscid] - 1;
cclib signal setlastsignal: lastSignal := 〈self, Head(cq[cclscid])〉;
cclib signal actualsignal: call java signal(cclscid);

};
cclib signal end: return;

}

Fig. 9. Priority monitors encoded in PlusCal.

independent of the number of processes. The second property is proved by in-
duction on the number of awaiting processes. The third property is not strictly
necessary for the safety requirements of the Monitor class, but is nice anyway.
The full TLA theory and an appendix detailing the formal proof (done by hand)
of the first two theorems can be found with the rest of the cclib software, at
http://babel.ls.fi.upm.es/software/cclib/doc.

process (procid ∈ ProcId) {
proc enter: call cclib enter();
proc in: order := Append(order,self); * to keep the order to gain access
proc await: with (cid ∈ CId) { if (cid # 0) { call cclib await(cid); }; };
proc signal: with (cid ∈ CId) { if (cid # 0) { call cclib signal(cid); }; };
proc leave: call cclib leave();

}

Fig. 10. Process specification.

6 Conclusion

We have presented an implementation of nonblocking (signal-and-continue) pri-
ority monitors in Java, implemented on top of the existing nonblocking, no-
priority implementation in the standard locks & conditions package. Moreover,
we have provided a state model for our solution (extending a model of the ex-
isting Java mechanism) that gives formal evidence that the priority mechanism
is actually implemented by our algorithm.

Our Monitor class encourages the use of certain coding styles that cannot be
used with the standard Java implementation (i.e., the 0-1 await/signal coding
idiom) and that result in cleaner, safer code, and we are actually using it in the
classroom as a replacement of standard locks and conditions.

To our knowledge, there are just two other publicly available implementations
of priority monitors in Java. The first one, by Chiao, Wu and Yuan [4], is really a
language extension devised to overcome the limitations of synchronized methods
and per-object waitsets – the paper is from 1999 and locks and conditions had
not been added to Java yet. The implementation is based on a preprocessor
which translates extended Java programs into standard Java code that invokes
the methods of some EMonitor class in the right sequence. In a more recent work,
T.S. Norvell [11] already considers the limitations of Java monitors in the light of
the provided locks and conditions library. However, his approach is different from
ours, reimplementing the monitor functionality on top of lower level concurrency
mechanisms (semaphores) and using explicit queues of threads. The fact that
our code is conciser and based on higher-level methods has facilitated the use of
model-checking as a validation tool, while his implementation is not verified.6

Some details of the reference implementation of Java locks have been omitted
in our model, namely the possibility of spurious wakeups and reentrant locking.
Regarding the first, it is fairly reasonable to assume the implementation of class
ReentrantLock to be free of spurious wakeups as, in the most liberal interpretation
of the API specification, they would make most attempts at formal reasoning
useless. Regarding the second, it can be seen as a benefit of the model-driven
approach: we do not consider features useless for the intended idioms.

6 To be fair, Norvell’s implementation is longer also because he extends the function-
ality of Java monitors in other ways.

Methodologically speaking, the use of PlusCal/TLA as an intermediate stage
between model checking/Uppaal and a deductive proof using some program ver-
ification tool seems an adequate compromise. On one hand, the PlusCal model
is closer to the actual Java code while containing all the information in the Up-
paal one. Also, now that we have crafted a TLA proof of the key properties of
our system by hand, we have a clearer idea of the techniques that should be
supported by a program verification system in order to facilitate the task that
remains future work.

Acknowledgments. We are very grateful to Bart Jacobs and the anonymous
reviewers for their comments on an earlier version of this paper.

References

1. Gerd Behrmann, Alexandre David, and Kim G. Larsen. A tutorial on Uppaal. In
M. Bernardo and F. Corradini, editors, International School on Formal Methods for
the Design of Computer, Communication, and Software Systems, SFM-RT 2004.
Revised Lectures, volume 3185 of Lecture Notes in Computer Science, pages 200–
237. Springer Verlag, 2004.

2. Peter A. Buhr, Michel Fortier, and Michael H. Coffin. Monitor classification. ACM
Computing Surveys, 27:63–107, 1995.

3. Manuel Carro, Julio Mariño, Ángel Herranz, and Juan José Moreno-Navarro.
Teaching how to derive correct concurrent programs (from state-based specifica-
tions and code patterns). In C.N. Dean and R.T. Boute, editors, Teaching Formal
Methods, CoLogNET/FME Symposium, TFM 2004, Ghent, Belgium, volume 3294
of LNCS, pages 85–106. Springer, 2004. ISBN 3-540-23611-2.

4. Hsin-Ta Chiao, Chi-Houng Wu, and Shyan-Ming Yuan. A more expressive monitor
for concurrent Java programming. In Arndt Bode, Thomas Ludwig, Wolfgang Karl,
and Roland Wismüller, editors, Euro-Par 2000 Parallel Processing, volume 1900 of
Lecture Notes in Computer Science, pages 1053–1060. Springer Berlin / Heidelberg,
2000.

5. E. Allen Emerson and Joseph Y. Halpern. s̈ometimesänd n̈ot neverr̈evisited: on
branching versus linear time temporal logic. J. ACM, 33(1):151–178, January 1986.

6. Per Brinch Hansen. Java’s insecure parallelism. ACM SIGPLAN Notices, 34:38–45,
1999.

7. Ángel Herranz, Julio Mariño, Manuel Carro, and Juan José Moreno-Navarro. Mod-
eling concurrent systems with shared resources. In Formal Methods for Industrial
Critical Systems, 14th International Workshop, FMICS 2009, Eindhoven, The
Netherlands, November 2-3, 2009. Proceedings, volume 5825 of Lecture Notes in
Computer Science, pages 102–116, 2009.

8. Leslie Lamport. The temporal logic of actions. ACM Trans. Program. Lang. Syst.,
16(3):872–923, May 1994.

9. Leslie Lamport. Specifying Systems. Addison Wesley, 2004.
10. Leslie Lamport. The PlusCal algorithm language. In Martin Leucker and Carroll

Morgan, editors, Theoretical Aspects of Computing (ICTAC2009), number 5684 in
LNCS, pages 36–60. Springer Verlag, 2009.

11. Theodore S. Norvell. Better monitors for Java. Javaworld, October 2007.
http://www.javaworld.com/javaworld/jw-10-2007/jw-10-monitors.html.

12. TLA+. The Way to Specify. http://www.tlaplus.net/.

lq : 2 7 6 4pq :

3cq1 :

· · ·

1cqk :

Fig. 11. State of the process queues in the PlusCal simulation.

A Proofs

A proof of the three properties stated in Section 5 follows. Section A.5 contains
the whole specification of the algorithm in TLA+.

A.1 Facts of the Model

The model of our monitor implementation is based on the following facts that
will be used in the proofs:

– For a process to gain access to the monitor, from cclib enter or cclib await(cid),
its process id must be the first in the “locking queue” lq (and just one process
can be at the head).

– Processes ids are inserted in this queue in three situations:
1. When the process execute java lock : label java lock begin in Figure 8.
2. When the process is signalled by other process: the signaller moves

the signalled process id from a condition queue (cq(cid)) to lq : label
java signal requeue in Figure 8. This requeue can be done from two
different points:
(a) When the signalled process was in the purgatory: labels cclib leave saveit

and java await saveit in Figure 9.
(b) When the signalled process was in a user condition: label cclib actual signal

in Figure 9.
– The only process that can progress is the one at the head of lq , as this is

precisely the guard that controls the execution of processes after perform-
ing a java lock (label java lock blocked in Figure 8) or a java await (label
java await blocked in Figure 8).

Several lemmata are assumed for all of them, which are stated first. Also, a
graphical representation of a state of the PlusCal execution is shown in Figure 11.

Queue lq is the “lock” or “enter” queue. Process identifiers are always en-
queued in lq when trying to execute an enter. Moreover, a pid can be inserted in
this queue in two more situations: right after receiving a signal and after being

sent to the purgatory. It is important to note that apart from the processes that
try to execute enter – which simply enqueue their pids in lq and get blocked –
the only process that can progress is the one at the head of lq , as this is precisely
the guard that controls the execution of processes after performing an enter, thus
ensuring mutual exclusion inside the monitor.

Queue pq = cq0 is the purgatory queue. A process trying to enter “moves”
its own pid from the head of lq to the rear of pq when there are pending signals
– to give way to the signalled process – or when there are already some pid’s
annotated in the purgatory – so as to prevent overtaking other processes in a
similar situation.

Queues cq1 . . . cqk are the “condition” queues. A process that executes await
on condition i moves its pid from the head of lq to the rear of cqi . If, later,
another process executes a signal on condition i , it will move the pid at the
front of cqi to the rear of lq , and pendingSignals is incremented. This is the
second “state” that a process annotated in lq can be in.

As pq = cq0, i.e., it is one distinguished condition queue, processes blocked on
it are eventually signalled when no better option exists. That means that those
pids will also be moved from the front of pq to the rear of lq . As this happens
when the process is blocked at a different code point than a normal signal, we
regard this as a third state. The colors in Figure 11 are used to distinguish the
point of the code at which the process whose pid is at a given cell of lq blocked:
red for processes visiting lq for the first time, blue for processes which come
from the purgatory and yellow for processes signalled after being blocked on a
(normal) condition.7

The aforementioned lemmata follow. Lemmas only needed for proving one of
the main properties can be found in the corresponding sections.

Lemma 1 (Weak fairness). We assume that all processes have finite progress.

Proof. By definition, the system specification Spec in TLA+ directly specifies
finite progress for every process: weak fairness is require for the Next action and
the Next action means “every process is eligible for execution” (by a explicit
enumeration of their program points):
Spec

∆
= ∧ Init ∧ 2[Next]vars ∧WFvars(Next)

Next
∆
= (∃ self ∈ ProcSet : ∨ java lock(self) ∨ java unlock(self)

∨ java await(self) ∨ java signal(self)
∨ cclib enter(self) ∨ cclib leave(self)
∨ cclib await(self) ∨ cclib signal(self))
∨ proc enter(self) ∨ proc in(self)
∨ proc await(self) ∨ proc signal(self)
∨ proc leave(self))

Lemma 2 (Mutual exclusion). The only process that can progress inside the
monitor is the one whose pid is annotated at the front of lq.

7 Abusing a bit, we have displayed the cell for process 4 in blue, state that will be
reached when it is moved back to lq and no yellow cells exist.

Proof. Only one process id can be the first element of lq .

Lemma 3. All queues have bounded size.

Lemma 4 (At most one pending signal). If processes are not allowed to
call signal twice before they execute leave, the value of pendingSignals is at
most one.

A.2 Proof of Theorem 1

The characteristic property was expressed as an invariant of a slightly instru-
mented model in which a pair of two auxiliary variables were used to recall the
pids of the signaler and signaled processes after performing a signal:

∀ pid ∈ ProcSet : (InPurgatory(pid) ; pc[pid] = “proc in”)

Lemma 5. There can only be one yellow pid in lq at a given time.

We will consider several cases, depending on the execution state of the process
whose pid is at the front of lq , which will be named p:

Case 1: a signaled process. Then p is a yellow cell. Initially, when p reaches
the front of lq , we know that pc[p] is not in any of the points required for the
antecedent of the invariant. Then, the state evolves to a state in which the
antecedent is true and (due to the previous lemma) the consequent is also true
– lastSignal [1] = p – and later, p performs a leave, which resets the pair (that
makes the invariant hold) and finally removes p from the front of lq (which takes
us to a different case).

Case 2: a locker. There are also several subcases here. If p is the signaler,
an argument similar to the previous one shows that the system evolves only
through states in which the invariant holds until p performs a leave – in this
case lastSignal [0] = p right before the leave.

If p is a (red) locker, and there is no pending signal, then lastSignal = 〈0, 0〉, XM Note:
Necesitamos un lema
para esto?

and the invariant holds when pc[p] = locker in. Otherwise, if there is one signal
pending, then p blocks in the purgatory before removing itself from lq so the
invariant holds in all the states in between.

The reasoning for blue lockers is analogous.

A.3 Proof of Theorem 2

The heart of this proof lies in showing the “liveness” of pq , i.e. that it decreases
eventually. This is so because pids cannot be in the purgatory an arbitrary
number of times.

Lemma 6. A pid cannot be in lq more than three times.

Lemma 7 (Liveness of pq). The pid at the front of pq will be eventually re-
moved. XM Note: esta es la

parte que tiene seis
casos.

A.4 Proof of Theorem 3

A.5 CCLib Monitor Specification in TLA+

module Monitor
extends Naturals, Sequences, TLC , FiniteSets, TLAPS

Auxiliary definitions

General definitions

PositiveInteger
∆
= Nat \ {0}

Operations on

Last(q)
∆
= q [Len(q)]

Front(q)
∆
= [i ∈ 1 . . (Len(q)− 1) 7→ q [i]]

not used: Insert as 2nd(q , x)
∆
= 〈x 〉 ◦ q

Member(q , e)
∆
= ∃ i ∈ 1 . . Len(q) : q [i] = e

Index (q , e)
∆
= choose i ∈ 1 . . Len(q) : q [i] = e

Process identifiers

constants N Procs
assume AtLeastOne

∆
= ∧ N Procs ∈ PositiveInteger

First ProcId
∆
= 1

Last ProcId
∆
= First ProcId + N Procs − 1

ProcId
∆
= First ProcId . . Last ProcId

Condition identifiers (condition number 0 will be implemented as purgatory)

constant N Conditions
assume N Conditions ∈ PositiveInteger
CId

∆
= 0 . . N Conditions

–algorithm TestMonitor
{

variables
\ ∗ Problem variables
cq = [cid ∈ CId 7→ 〈〉];
lq = 〈〉;
pendingSignals = 0;
inPurgatory = 0;
waiting = [cid ∈ CId 7→ 0];

\ ∗ Instrumentation
lastSignal = 〈0, 0〉; \ ∗ 〈signaller , signalled〉
entryOrder = 〈〉;

\ ∗∗∗
\ ∗ Specification of the Java implementations of Lock and Conditions
procedure java lock()
{

java lock begin :
lq := Append(lq , self);

java lock blocked :
await self = Head(lq);

java lock end :
return;

}

procedure java unlock()
{

java unlock begin :
lq := Tail(lq);

java unlock end :
return;

}

procedure java await(wcid)
{

java await begin :
cq [wcid] := Append(cq [wcid], self);

java await unlocking :
lq := Tail(lq);

java await blocked :
await Len(lq) > 0 ∧ self = Head(lq);

java await end :
return;

}

procedure java signal(scid)
{

java signal begin :
if (Len(cq [scid]) > 0){

lq := Append(lq , Head(cq [scid]));
cq [scid] := Tail(cq [scid]);
};

java signal end :
return;

}

\ ∗∗∗
\ ∗ Specification of the CCLib implementations of Monitors
procedure cclib enter()
{

cclib enter begin :
call java lock();

cclib enter check priority :
if (pendingSignals > 0 ∨ inPurgatory > 0){

inPurgatory := inPurgatory + 1;

cclib enter to purgatory :
call java await(0);

cclib enter toheaven :
inPurgatory := inPurgatory − 1;
};

cclib enter end :
return;

}

procedure cclib leave()
{

cclib leave begin :
if (pendingSignals = 0 ∧ inPurgatory > 0){

call java signal(0);
};

cclib leave resetlastsignal :
if (lastSignal [1] 6= self){

lastSignal := 〈0, 0〉;
};

cclib leave unlocking :
call java unlock();

cclib leave end :
return;

}

procedure cclib await(cclwcid)
{

cclib await begin :
waiting [cclwcid] := waiting [cclwcid] + 1;
if (pendingSignals = 0 ∧ inPurgatory > 0){

call java signal(0);
};

cclib await actualawait :
call java await(cclwcid);

cclib await reentering :
pendingSignals := pendingSignals − 1;

cclib await end :
return;

}

procedure cclib signal(cclscid)
{

cclib signal begin :
if (waiting [cclscid] > 0){

cclib signal actualsignal :
pendingSignals := pendingSignals + 1;
waiting [cclscid] := waiting [cclscid]− 1;

cclib signal setlastsignal :
lastSignal := 〈self , Head(cq [cclscid])〉;
call java signal(cclscid);
};

cclib signal end :
return;

}

\ ∗∗∗
\ ∗ Process in the system
process(procid ∈ ProcId)
{

proc enter :
call cclib enter();

proc in :
entryOrder := Append(entryOrder , self);

proc await :
with(cid ∈ CId){

if (cid 6= 0){
call cclib await(cid);
};
};

proc signal :
with(cid ∈ CId){

if (cid 6= 0){
call cclib signal(cid);
};
};

proc leave :
call cclib leave();

}
}

BEGIN TRANSLATION

constant defaultInitValue

variables cq , lq , pendingSignals, inPurgatory , waiting , lastSignal ,

entryOrder , pc, stack , wcid , scid , cclwcid , cclscid

vars
∆
= 〈cq , lq , pendingSignals, inPurgatory , waiting , lastSignal ,

entryOrder , pc, stack , wcid , scid , cclwcid , cclscid〉

ProcSet
∆
= (ProcId)

Init
∆
= Global variables

∧ cq = [cid ∈ CId 7→ 〈〉]
∧ lq = 〈〉
∧ pendingSignals = 0

∧ inPurgatory = 0

∧ waiting = [cid ∈ CId 7→ 0]
∧ lastSignal = 〈0, 0〉
∧ entryOrder = 〈〉
Procedure java await

∧ wcid = [self ∈ ProcSet 7→ defaultInitValue]
Procedure java signal

∧ scid = [self ∈ ProcSet 7→ defaultInitValue]
Procedure cclib await

∧ cclwcid = [self ∈ ProcSet 7→ defaultInitValue]
Procedure cclib signal

∧ cclscid = [self ∈ ProcSet 7→ defaultInitValue]
∧ stack = [self ∈ ProcSet 7→ 〈〉]
∧ pc = [self ∈ ProcSet 7→ case self ∈ ProcId → “proc enter”]

java lock begin(self)
∆
= ∧ pc[self] = “java lock begin”
∧ lq ′ = Append(lq , self)
∧ pc′ = [pc except ! [self] = “java lock blocked”]
∧ unchanged 〈cq , pendingSignals, inPurgatory ,

waiting , lastSignal , entryOrder ,
stack , wcid , scid , cclwcid ,
cclscid〉

java lock blocked(self)
∆
= ∧ pc[self] = “java lock blocked”
∧ self = Head(lq)
∧ pc′ = [pc except ! [self] = “java lock end”]
∧ unchanged 〈cq , lq , pendingSignals,

inPurgatory , waiting ,
lastSignal , entryOrder , stack ,
wcid , scid , cclwcid , cclscid〉

java lock end(self)
∆
= ∧ pc[self] = “java lock end”
∧ pc′ = [pc except ! [self] = Head(stack [self]).pc]
∧ stack ′ = [stack except ! [self] = Tail(stack [self])]
∧ unchanged 〈cq , lq , pendingSignals,

inPurgatory , waiting , lastSignal ,
entryOrder , wcid , scid , cclwcid ,
cclscid〉

java lock(self)
∆
= java lock begin(self) ∨ java lock blocked(self)

∨ java lock end(self)

java unlock begin(self)
∆
= ∧ pc[self] = “java unlock begin”
∧ lq ′ = Tail(lq)
∧ pc′ = [pc except ! [self] = “java unlock end”]
∧ unchanged 〈cq , pendingSignals,

inPurgatory , waiting ,
lastSignal , entryOrder , stack ,

wcid , scid , cclwcid , cclscid〉

java unlock end(self)
∆
= ∧ pc[self] = “java unlock end”
∧ pc′ = [pc except ! [self] = Head(stack [self]).pc]
∧ stack ′ = [stack except ! [self] = Tail(stack [self])]
∧ unchanged 〈cq , lq , pendingSignals,

inPurgatory , waiting ,
lastSignal , entryOrder , wcid ,
scid , cclwcid , cclscid〉

java unlock(self)
∆
= java unlock begin(self)

∨ java unlock end(self)

java await begin(self)
∆
= ∧ pc[self] = “java await begin”
∧ cq ′ = [cq except ! [wcid [self]] = Append(cq [wcid [self]], self)]
∧ pc′ = [pc except ! [self] = “java await unlocking”]
∧ unchanged 〈lq , pendingSignals,

inPurgatory , waiting ,
lastSignal , entryOrder , stack ,
wcid , scid , cclwcid , cclscid〉

java await unlocking(self)
∆
= ∧ pc[self] = “java await unlocking”
∧ lq ′ = Tail(lq)
∧ pc′ = [pc except ! [self] = “java await blocked”]
∧ unchanged 〈cq , pendingSignals,

inPurgatory , waiting ,
lastSignal , entryOrder ,
stack , wcid , scid , cclwcid ,
cclscid〉

java await blocked(self)
∆
= ∧ pc[self] = “java await blocked”
∧ Len(lq) > 0 ∧ self = Head(lq)
∧ pc′ = [pc except ! [self] = “java await end”]
∧ unchanged 〈cq , lq , pendingSignals,

inPurgatory , waiting ,
lastSignal , entryOrder ,
stack , wcid , scid , cclwcid ,
cclscid〉

java await end(self)
∆
= ∧ pc[self] = “java await end”
∧ pc′ = [pc except ! [self] = Head(stack [self]).pc]
∧ wcid ′ = [wcid except ! [self] = Head(stack [self]).wcid]
∧ stack ′ = [stack except ! [self] = Tail(stack [self])]
∧ unchanged 〈cq , lq , pendingSignals,

inPurgatory , waiting , lastSignal ,
entryOrder , scid , cclwcid ,
cclscid〉

java await(self)
∆
= java await begin(self)

∨ java await unlocking(self)
∨ java await blocked(self) ∨ java await end(self)

java signal begin(self)
∆
= ∧ pc[self] = “java signal begin”
∧ if Len(cq [scid [self]]) > 0

then ∧ lq ′ = Append(lq , Head(cq [scid [self]]))
∧ cq ′ = [cq except ! [scid [self]] = Tail(cq [scid [self]])]

else ∧ true
∧ unchanged 〈cq , lq〉

∧ pc′ = [pc except ! [self] = “java signal end”]
∧ unchanged 〈pendingSignals, inPurgatory ,

waiting , lastSignal ,
entryOrder , stack , wcid , scid ,
cclwcid , cclscid〉

java signal end(self)
∆
= ∧ pc[self] = “java signal end”
∧ pc′ = [pc except ! [self] = Head(stack [self]).pc]
∧ scid ′ = [scid except ! [self] = Head(stack [self]).scid]
∧ stack ′ = [stack except ! [self] = Tail(stack [self])]
∧ unchanged 〈cq , lq , pendingSignals,

inPurgatory , waiting ,
lastSignal , entryOrder , wcid ,
cclwcid , cclscid〉

java signal(self)
∆
= java signal begin(self)

∨ java signal end(self)

cclib enter begin(self)
∆
= ∧ pc[self] = “cclib enter begin”
∧ stack ′ = [stack except ! [self] = 〈[procedure 7→ “java lock”,

pc 7→ “cclib enter check priority”]〉
◦ stack [self]]

∧ pc′ = [pc except ! [self] = “java lock begin”]
∧ unchanged 〈cq , lq , pendingSignals,

inPurgatory , waiting ,
lastSignal , entryOrder , wcid ,
scid , cclwcid , cclscid〉

cclib enter check priority(self)
∆
= ∧ pc[self] = “cclib enter check priority”
∧ if pendingSignals > 0 ∨ inPurgatory > 0

then ∧ inPurgatory ′ = inPurgatory + 1
∧ pc′ = [pc except ! [self] = “cclib enter to purgatory”]

else ∧ pc′ = [pc except ! [self] = “cclib enter end”]
∧ unchanged inPurgatory

∧ unchanged 〈cq , lq ,
pendingSignals,
waiting , lastSignal ,

entryOrder , stack ,
wcid , scid , cclwcid ,
cclscid〉

cclib enter to purgatory(self)
∆
= ∧ pc[self] = “cclib enter to purgatory”
∧ ∧ stack ′ = [stack except ! [self] = 〈[procedure 7→ “java await”,

pc 7→ “cclib enter toheaven”,
wcid 7→ wcid [self]]〉
◦ stack [self]]

∧ wcid ′ = [wcid except ! [self] = 0]
∧ pc′ = [pc except ! [self] = “java await begin”]
∧ unchanged 〈cq , lq , pendingSignals,

inPurgatory , waiting ,
lastSignal , entryOrder ,
scid , cclwcid , cclscid〉

cclib enter toheaven(self)
∆
= ∧ pc[self] = “cclib enter toheaven”
∧ inPurgatory ′ = inPurgatory − 1
∧ pc′ = [pc except ! [self] = “cclib enter end”]
∧ unchanged 〈cq , lq , pendingSignals,

waiting , lastSignal ,
entryOrder , stack , wcid ,
scid , cclwcid , cclscid〉

cclib enter end(self)
∆
= ∧ pc[self] = “cclib enter end”
∧ pc′ = [pc except ! [self] = Head(stack [self]).pc]
∧ stack ′ = [stack except ! [self] = Tail(stack [self])]
∧ unchanged 〈cq , lq , pendingSignals,

inPurgatory , waiting ,
lastSignal , entryOrder , wcid ,
scid , cclwcid , cclscid〉

cclib enter(self)
∆
= cclib enter begin(self)

∨ cclib enter check priority(self)
∨ cclib enter to purgatory(self)
∨ cclib enter toheaven(self)
∨ cclib enter end(self)

cclib leave begin(self)
∆
= ∧ pc[self] = “cclib leave begin”
∧ if pendingSignals = 0 ∧ inPurgatory > 0

then ∧ ∧ scid ′ = [scid except ! [self] = 0]
∧ stack ′ = [stack except ! [self] = 〈[procedure 7→ “java signal”,

pc 7→ “cclib leave resetlastsignal”,
scid 7→ scid [self]]〉
◦ stack [self]]

∧ pc′ = [pc except ! [self] = “java signal begin”]
else ∧ pc′ = [pc except ! [self] = “cclib leave resetlastsignal”]

∧ unchanged 〈stack , scid〉
∧ unchanged 〈cq , lq , pendingSignals,

inPurgatory , waiting ,
lastSignal , entryOrder , wcid ,
cclwcid , cclscid〉

cclib leave resetlastsignal(self)
∆
= ∧ pc[self] = “cclib leave resetlastsignal”
∧ if lastSignal [1] 6= self

then ∧ lastSignal ′ = 〈0, 0〉
else ∧ true

∧ unchanged lastSignal
∧ pc′ = [pc except ! [self] = “cclib leave unlocking”]
∧ unchanged 〈cq , lq ,

pendingSignals,
inPurgatory ,
waiting , entryOrder ,
stack , wcid , scid ,
cclwcid , cclscid〉

cclib leave unlocking(self)
∆
= ∧ pc[self] = “cclib leave unlocking”
∧ stack ′ = [stack except ! [self] = 〈[procedure 7→ “java unlock”,

pc 7→ “cclib leave end”]〉
◦ stack [self]]

∧ pc′ = [pc except ! [self] = “java unlock begin”]
∧ unchanged 〈cq , lq , pendingSignals,

inPurgatory , waiting ,
lastSignal , entryOrder ,
wcid , scid , cclwcid ,
cclscid〉

cclib leave end(self)
∆
= ∧ pc[self] = “cclib leave end”
∧ pc′ = [pc except ! [self] = Head(stack [self]).pc]
∧ stack ′ = [stack except ! [self] = Tail(stack [self])]
∧ unchanged 〈cq , lq , pendingSignals,

inPurgatory , waiting ,
lastSignal , entryOrder , wcid ,
scid , cclwcid , cclscid〉

cclib leave(self)
∆
= cclib leave begin(self)

∨ cclib leave resetlastsignal(self)
∨ cclib leave unlocking(self)
∨ cclib leave end(self)

cclib await begin(self)
∆
= ∧ pc[self] = “cclib await begin”
∧ waiting ′ = [waiting except ! [cclwcid [self]] = waiting [cclwcid [self]] + 1]
∧ if pendingSignals = 0 ∧ inPurgatory > 0

then ∧ ∧ scid ′ = [scid except ! [self] = 0]

∧ stack ′ = [stack except ! [self] = 〈[procedure 7→ “java signal”,
pc 7→ “cclib await actualawait”,
scid 7→ scid [self]]〉
◦ stack [self]]

∧ pc′ = [pc except ! [self] = “java signal begin”]
else ∧ pc′ = [pc except ! [self] = “cclib await actualawait”]

∧ unchanged 〈stack , scid〉
∧ unchanged 〈cq , lq , pendingSignals,

inPurgatory , lastSignal ,
entryOrder , wcid , cclwcid ,
cclscid〉

cclib await actualawait(self)
∆
= ∧ pc[self] = “cclib await actualawait”
∧ ∧ stack ′ = [stack except ! [self] = 〈[procedure 7→ “java await”,

pc 7→ “cclib await reentering”,
wcid 7→ wcid [self]]〉
◦ stack [self]]

∧ wcid ′ = [wcid except ! [self] = cclwcid [self]]
∧ pc′ = [pc except ! [self] = “java await begin”]
∧ unchanged 〈cq , lq , pendingSignals,

inPurgatory , waiting ,
lastSignal , entryOrder ,
scid , cclwcid , cclscid〉

cclib await reentering(self)
∆
= ∧ pc[self] = “cclib await reentering”
∧ pendingSignals ′ = pendingSignals − 1
∧ pc′ = [pc except ! [self] = “cclib await end”]
∧ unchanged 〈cq , lq , inPurgatory ,

waiting , lastSignal ,
entryOrder , stack , wcid ,
scid , cclwcid , cclscid〉

cclib await end(self)
∆
= ∧ pc[self] = “cclib await end”
∧ pc′ = [pc except ! [self] = Head(stack [self]).pc]
∧ cclwcid ′ = [cclwcid except ! [self] = Head(stack [self]).cclwcid]
∧ stack ′ = [stack except ! [self] = Tail(stack [self])]
∧ unchanged 〈cq , lq , pendingSignals,

inPurgatory , waiting ,
lastSignal , entryOrder , wcid ,
scid , cclscid〉

cclib await(self)
∆
= cclib await begin(self)

∨ cclib await actualawait(self)
∨ cclib await reentering(self)
∨ cclib await end(self)

cclib signal begin(self)
∆
= ∧ pc[self] = “cclib signal begin”

∧ if waiting [cclscid [self]] > 0
then ∧ pc′ = [pc except ! [self] = “cclib signal actualsignal”]
else ∧ pc′ = [pc except ! [self] = “cclib signal end”]

∧ unchanged 〈cq , lq , pendingSignals,
inPurgatory , waiting ,
lastSignal , entryOrder ,
stack , wcid , scid , cclwcid ,
cclscid〉

cclib signal actualsignal(self)
∆
= ∧ pc[self] = “cclib signal actualsignal”
∧ pendingSignals ′ = pendingSignals + 1
∧ waiting ′ = [waiting except ! [cclscid [self]] = waiting [cclscid [self]]− 1]
∧ pc′ = [pc except ! [self] = “cclib signal setlastsignal”]
∧ unchanged 〈cq , lq , inPurgatory ,

lastSignal ,
entryOrder , stack ,
wcid , scid , cclwcid ,
cclscid〉

cclib signal setlastsignal(self)
∆
= ∧ pc[self] = “cclib signal setlastsignal”
∧ lastSignal ′ = 〈self , Head(cq [cclscid [self]])〉
∧ ∧ scid ′ = [scid except ! [self] = cclscid [self]]
∧ stack ′ = [stack except ! [self] = 〈[procedure 7→ “java signal”,

pc 7→ “cclib signal end”,
scid 7→ scid [self]]〉
◦ stack [self]]

∧ pc′ = [pc except ! [self] = “java signal begin”]
∧ unchanged 〈cq , lq ,

pendingSignals,
inPurgatory , waiting ,
entryOrder , wcid ,
cclwcid , cclscid〉

cclib signal end(self)
∆
= ∧ pc[self] = “cclib signal end”
∧ pc′ = [pc except ! [self] = Head(stack [self]).pc]
∧ cclscid ′ = [cclscid except ! [self] = Head(stack [self]).cclscid]
∧ stack ′ = [stack except ! [self] = Tail(stack [self])]
∧ unchanged 〈cq , lq , pendingSignals,

inPurgatory , waiting ,
lastSignal , entryOrder , wcid ,
scid , cclwcid〉

cclib signal(self)
∆
= cclib signal begin(self)

∨ cclib signal actualsignal(self)
∨ cclib signal setlastsignal(self)
∨ cclib signal end(self)

proc enter(self)
∆
= ∧ pc[self] = “proc enter”
∧ stack ′ = [stack except ! [self] = 〈[procedure 7→ “cclib enter”,

pc 7→ “proc in”]〉
◦ stack [self]]

∧ pc′ = [pc except ! [self] = “cclib enter begin”]
∧ unchanged 〈cq , lq , pendingSignals, inPurgatory ,

waiting , lastSignal , entryOrder ,
wcid , scid , cclwcid , cclscid〉

proc in(self)
∆
= ∧ pc[self] = “proc in”
∧ entryOrder ′ = Append(entryOrder , self)
∧ pc′ = [pc except ! [self] = “proc await”]
∧ unchanged 〈cq , lq , pendingSignals, inPurgatory ,

waiting , lastSignal , stack , wcid , scid ,
cclwcid , cclscid〉

proc await(self)
∆
= ∧ pc[self] = “proc await”
∧ ∃ cid ∈ CId :

if cid 6= 0
then ∧ ∧ cclwcid ′ = [cclwcid except ! [self] = cid]

∧ stack ′ = [stack except ! [self] = 〈[procedure 7→ “cclib await”,
pc 7→ “proc signal”,
cclwcid 7→ cclwcid [self]]〉
◦ stack [self]]

∧ pc′ = [pc except ! [self] = “cclib await begin”]
else ∧ pc′ = [pc except ! [self] = “proc signal”]

∧ unchanged 〈stack , cclwcid〉
∧ unchanged 〈cq , lq , pendingSignals, inPurgatory ,

waiting , lastSignal , entryOrder ,
wcid , scid , cclscid〉

proc signal(self)
∆
= ∧ pc[self] = “proc signal”
∧ ∃ cid ∈ CId :

if cid 6= 0
then ∧ ∧ cclscid ′ = [cclscid except ! [self] = cid]

∧ stack ′ = [stack except ! [self] = 〈[procedure 7→ “cclib signal”,
pc 7→ “proc leave”,
cclscid 7→ cclscid [self]]〉
◦ stack [self]]

∧ pc′ = [pc except ! [self] = “cclib signal begin”]
else ∧ pc′ = [pc except ! [self] = “proc leave”]

∧ unchanged 〈stack , cclscid〉
∧ unchanged 〈cq , lq , pendingSignals, inPurgatory ,

waiting , lastSignal , entryOrder ,
wcid , scid , cclwcid〉

proc leave(self)
∆
= ∧ pc[self] = “proc leave”

∧ stack ′ = [stack except ! [self] = 〈[procedure 7→ “cclib leave”,
pc 7→ “Done”]〉
◦ stack [self]]

∧ pc′ = [pc except ! [self] = “cclib leave begin”]
∧ unchanged 〈cq , lq , pendingSignals, inPurgatory ,

waiting , lastSignal , entryOrder ,
wcid , scid , cclwcid , cclscid〉

procid(self)
∆
= proc enter(self) ∨ proc in(self)

∨ proc await(self) ∨ proc signal(self)
∨ proc leave(self)

Next
∆
= (∃ self ∈ ProcSet : ∨ java lock(self) ∨ java unlock(self)

∨ java await(self)
∨ java signal(self)
∨ cclib enter(self)
∨ cclib leave(self)
∨ cclib await(self)
∨ cclib signal(self))

∨ (∃ self ∈ ProcId : procid(self))
∨ Disjunct to prevent deadlock on termination

((∀ self ∈ ProcSet : pc[self] = “Done”) ∧ unchanged vars)

Spec
∆
= ∧ Init ∧ 2[Next]vars
∧WFvars(Next)

Termination
∆
= 3(∀ self ∈ ProcSet : pc[self] = “Done”)

END TRANSLATION

Invariants and temporal properties (theorems)

Types
∆
=

Global variables

∧ cq ∈ [CId → Seq(ProcSet)]
∧ lq ∈ Seq(ProcSet)
∧ pendingSignals ∈ Nat
∧ inPurgatory ∈ Nat
∧ waiting ∈ [CId → Nat]
∧ lastSignal ∈ (ProcSet ∪ {0})× (ProcSet ∪ {0})
Procedure java await

∧ wcid ∈ [ProcSet → CId ∪ {defaultInitValue}]
Procedure java signal

∧ scid ∈ [ProcSet → CId ∪ {defaultInitValue}]
Procedure cclib await

∧ cclwcid ∈ [ProcSet → CId ∪ {defaultInitValue}]

Procedure cclib signal

∧ cclscid ∈ [ProcSet → CId ∪ {defaultInitValue}]

theorem TypePreservation
∆
= 2Types

0.−Mutex

Mutex
∆
=

∀ pid1 ∈ ProcSet :
∀ pid2 ∈ ProcSet :

pc[pid1] = “proc in” ∧ pc[pid2] = “proc in”⇒ pid1 = pid2

1.− Characteristic property: La que hemos chequeado con UPPAAL, que si se hace
un signal sobre una condition no vaćıa, el siguiente thread en tomar acceso del
monitor es el primero de dicha condition, y no alguno de los que estaban en la
cola del lock mutex.

As an invariant with the instrumentation:

CharacteristicAsInv
∆
=

∀ pid ∈ ProcSet : pc[pid] = “proc in”⇒ lastSignal [2] ∈ {0, pid}

2.− ToHeaven: se acaba saliendo del purgatorio

InPurgatory(pid)
∆
= Member(cq [0], pid)

ToHeaven
∆
= ∀ pid ∈ ProcSet : (InPurgatory(pid) ; pc[pid] = “proc in”)

by Auto

theorem ToHeavenThm
∆
= InPurgatory(1) ; pc[1] = “proc in”

〈1〉1. assume InPurgatory(1) ∧ [Next]vars ⇒ (InPurgatory(1)′ ∨ pc′[1] = “proc in”′),
InPurgatory(1) ∧ 〈Next〉vars ⇒ pc′[1] = “proc in”,
InPurgatory(1)⇒ enabled 〈Next〉vars

prove 2[Next]vars ∧WFvars(Next)⇒ (InPurgatory(1) ; pc[1] = “proc in”)
by RuleWF 1
〈1〉.qed

3.−OrderPreservation:

NoOrderPreservation
∆
=

∀ pid1 ∈ ProcSet :
∀ pid2 ∈ ProcSet :

(∧ Member(cq [0], pid1)
∧ pc[pid2] = “java lock blocked”)
;

(∧ Member(entryOrder , pid1)
∧ Member(entryOrder , pid2)

∧ Index (entryOrder , pid2) < Index (entryOrder , pid1))

OrderPreservation
∆
= ¬ NoOrderPreservation

