HFusion

A Fusion Tool for Haskell programs

Alberto Pardo

Instituto de Computación
Universidad de la República
Montevideo - Uruguay
http://www.fing.edu.uy/~pardo

Modularity in FP

- In functional programming one often uses a compositional style of programming.
- Programs are constructed as the composition of simple and easy to write functions.
- Programs so defined are more modular and easier to understand.
- General purpose operators (like fold, map, filter, zip, etc.) play an important role in this design.

Example: trail

Function trail returns the last n lines of a text.
trail $n=$ unlines \circ reverse \circ take $n \circ$ reverse \circ lines

Example: count

count $::$ Word \rightarrow Text \rightarrow Integer
count $w=$ length \circ filter $(==w) \circ$ words
words $::$ Text $\rightarrow[$ Words $]$
words $t=$ case drop While isSpace t of
" " \rightarrow []
$t^{\prime} \rightarrow$ let $\left(w, t^{\prime \prime}\right)=$ break isSpace t^{\prime} in $w:$ words $t^{\prime \prime}$
filter $::(a \rightarrow$ Bool $) \rightarrow[a] \rightarrow[a]$
filter $p[]=[]$
filter $p(a: a s)=$ if $p a$ then $a:$ filter p as
else filter p as

Drawbacks of modularity

- Modular functions are not necessarily efficient.
- Each functional composition implies information passing through an intermediate data structure.

$$
A \xrightarrow{f} T \xrightarrow{g} B
$$

- Nodes of the intermediate data structure are generated/allocated by f and subsequently consumed by g.
- This may lead to repeated invocations to the garbage collector.

Deforestation

- Deforestation is a program transformation technique.
- Provided certain conditions hold, deforestation permits the derivation of equivalent functions that do not build intermediate data structures.
$A \longrightarrow \xrightarrow{f} T \xrightarrow{g} B$
- Our approach to deforestation is based on recursion program schemes.
- Associated with the recursion schemes there are algebraic laws -called fusion laws- which represent a form of deforestation.

Program Fusion

count $w=$ length \circ filter $(==w) \circ$ words

count $w t=\mathbf{c a s e}$ drop While isSpace t of

$$
" " \rightarrow 0
$$

$$
t^{\prime} \rightarrow \operatorname{let}\left(w^{\prime}, t^{\prime \prime}\right)=\text { break isSpace } t^{\prime}
$$

$$
\text { in if } w^{\prime}==w
$$

then $1+$ count $w t^{\prime \prime}$
else count $w t^{\prime \prime}$

How fusion proceeds

$$
\begin{aligned}
& \text { lenfil } p=\text { length } \circ \text { filter } p \\
& \text { length [] }=0 \\
& \text { length }(x: x s)=h x(\text { length } x s) \\
& \text { where } \\
& h x n=1+n \\
& \text { filter } p[]=[] \\
& \text { filter } p(a: a s)=\text { if } p a \text { then } a: \text { filter } p \text { as } \\
& \text { else filter } p \text { as }
\end{aligned}
$$

How fusion proceeds (cont.)

In the body of the first function,

- replace every occurrence of the constructors used to build the intermediate data structure (written in red) by the corresponding operations in the second function used to calculate the final result (written in green).
- replace recursive calls (written in blue) by calls to the new function

How fusion proceeds (cont.)

$$
\begin{aligned}
& \text { length }[]=0 \\
& \begin{array}{l}
\text { length }(x: x s)= \\
\\
\\
\text { where } x(\text { length } x s) \\
\\
\qquad h x n=1+n
\end{array} \\
& \text { filter } p[]=[] \\
& \text { filter } p(a: \text { as })=\text { if } p \text { a then } a: \text { filter } p \text { as } \\
& \text { else filter } p \text { as }
\end{aligned}
$$

The result:

$$
\begin{aligned}
& \text { lenfil } p[]=0 \\
& \text { lenfil } p(a: a s)=\text { if } p \text { a then } h \text { a (lenfil } p \text { as }) \\
& \text { else lenfil } p \text { as } \\
& \text { where } \\
& h x n=1+n
\end{aligned}
$$

Recursion schemes

- They capture general patterns of computation commonly used in practice.
- The schemes and their fusion laws can be defined generically for a family of data types.

Standard program schemes

- Fold (structural recursion)
- Unfold (structural co-recursion)
- Hylomorphism (general recursion)

Capturing the structure of functions

$$
\begin{aligned}
& \text { fact }:: \text { Int } \rightarrow \text { Int } \\
& \text { fact } n \mid n<1=1 \\
& \\
& \quad \mid \text { otherwise }=n * \text { fact }(n-1)
\end{aligned}
$$

Capturing the structure of functions (2)

data $a+b=$ Left $a \mid$ Right b

$$
\begin{aligned}
& \psi:: \text { Int } \rightarrow()+\text { Int } \times \text { Int } \\
& \psi n \mid n<1=\text { Left }() \\
& \quad \mid \text { otherwise }=\operatorname{Right}(n, n-1)
\end{aligned}
$$

fmap $f($ Left ()$)=$ Left ()
$\operatorname{fmap} f(\operatorname{Right}(m, n))=\operatorname{Right}(m, f n)$
$\varphi::()+$ Int \times Int \rightarrow Int
$\varphi($ Left ()$)=1$
$\varphi(\operatorname{Right}(m, n))=m * n$

Capturing the structure of functions (3)

$$
\text { fact }=\varphi \circ \text { fmap fact } \circ \psi
$$

Capturing the structure of functions (4)

Let us define,

$$
F a=()+I n t \times a
$$

Therefore,

Functor

A functor (F, fmap) consists of two components:

- a type constructor F, and
- a mapping function fmap $::(a \rightarrow b) \rightarrow(F a \rightarrow F b)$, which preserves identities and compositions:

$$
\begin{aligned}
f m a p i d & =i d \\
\text { fmap }(f \circ g) & =\text { fmap } f \circ f m a p g
\end{aligned}
$$

\leadsto it is usual to denote both components by F.

Hylomorphism

$$
\begin{aligned}
& \text { hylo }::(F b \rightarrow b) \rightarrow(a \rightarrow F a) \rightarrow a \rightarrow b \\
& \text { hylo } \varphi \psi=\varphi \circ F(\text { hylo } \varphi \psi) \circ \psi
\end{aligned}
$$

$\leadsto \varphi$ is called an algebra
$\sim \psi$ is called a coalgebra.

Data types

Functors describe the top level structure of data types.
For each data type declaration

$$
\text { data } T=C_{1} \tau_{1,1} \cdots \tau_{1, k_{1}}|\cdots| C_{n} \tau_{n, 1} \cdots \tau_{n, k_{n}}
$$

a functor F can be derived:

- constructor domains are packed in tuples;
- constant constructors are represented by the empty tuple ();
- alternatives are regarded as sums (replace | by +);
- occurrences of T are replaced by a type variable x in every $\tau_{i, j}$.

Examples: Lists

$$
\begin{aligned}
& \text { List } a=\text { Nil } \mid \text { Cons } a(\text { List } a) \\
& L_{a} x=()+a \times x \\
& L_{a}::(x \rightarrow y) \rightarrow\left(L_{a} x \rightarrow L_{a} y\right) \\
& L_{a} f(\operatorname{Left}())=\operatorname{Left}() \\
& L_{a} f(\operatorname{Right}(a, x))=\operatorname{Right}(a, f x)
\end{aligned}
$$

Example: Leaf-labelled binary trees

$$
B_{a} x=a+x \times x
$$

$$
\begin{aligned}
& B_{a}::(x \rightarrow y) \rightarrow\left(B_{a} x \rightarrow B_{a} y\right) \\
& B_{a} f(\text { Left } a)=\text { Left a } \\
& B_{a} f\left(\text { Right }\left(x, x^{\prime}\right)\right)=\operatorname{Right}\left(f x, f x^{\prime}\right)
\end{aligned}
$$

Example: Internally-labelled binary trees

data Tree $a=$ Empty \mid Node $($ Tree a) a (Tree a)

$$
T_{a} x=()+x \times a \times x
$$

$$
\begin{aligned}
& T_{a}::(x \rightarrow y) \rightarrow\left(T_{a} x \rightarrow T_{a} y\right) \\
& T_{a} f(\operatorname{Left}())=\operatorname{Left}() \\
& T_{a} f\left(\operatorname{Right}\left(x, a, x^{\prime}\right)\right)=\operatorname{Right}\left(f x, a, f x^{\prime}\right)
\end{aligned}
$$

Constructors / Destructors

For every data type T with functor F, there exists an isomorphism

$$
F \mu F \underset{\text { out }_{F}}{\stackrel{i n_{F}}{\leftrightarrows}} \mu F
$$

where

- μF denotes the data type
- $i n_{F}$ packs the constructors
- out F_{F} packs the destructors

Example: Leaf-labelled binary trees

data Btree $a=$ Leaf $a \mid \operatorname{Join}($ Btree $a)($ Btree $a)$

$$
B_{a} x=a+x \times x
$$

$$
i_{B_{a}}:: B_{a}(\text { Btree } a) \rightarrow \text { Btree } a
$$

$$
i_{B_{a}}(\text { Left } a)=\text { Leaf } a
$$

$$
\operatorname{in}_{B_{a}}\left(\operatorname{Right}\left(t, t^{\prime}\right)\right)=\text { Join } t t^{\prime}
$$

out $_{B_{a}}::$ Btree $a \rightarrow B_{a}($ Btree $a)$
out $_{B_{a}}($ Leaf $a)=$ Left a
out $_{B_{a}}\left(\operatorname{Join} t t^{\prime}\right)=\operatorname{Right}\left(t, t^{\prime}\right)$

Hylomorphism

$$
\begin{aligned}
& \text { hylo }::(F b \rightarrow b) \rightarrow(a \rightarrow F a) \rightarrow a \rightarrow b \\
& \text { hylo } \varphi \psi=\varphi \circ F(\text { hylo } \varphi \psi) \circ \psi
\end{aligned}
$$

Fold

$$
\begin{aligned}
& \text { fold }::(F a \rightarrow a) \rightarrow \mu F \rightarrow a \\
& \text { fold } \varphi=\varphi \circ F(\text { fold } \varphi) \circ \text { out }_{F}
\end{aligned}
$$

Fold: Lists

$$
\begin{aligned}
& \text { fold }_{L}::(b, a \rightarrow b \rightarrow b) \rightarrow \text { List } a \rightarrow b \\
& \text { fold }_{L}(b, h) \text { Nil }=b \\
& \text { fold }_{L}(b, h)(\text { Cons a as })=h a\left(\text { fold }_{L}(b, h) \text { as }\right)
\end{aligned}
$$

Example:

$$
\begin{aligned}
& \text { prod }:: \text { List Int } \rightarrow \text { Int } \\
& \text { prod Nil }=1 \\
& \text { prod }(\text { Cons } n n s)=n * \operatorname{prod} n s
\end{aligned}
$$

As a fold,

$$
\operatorname{prod}=\text { fold }_{L}(1,(*))
$$

$$
\begin{aligned}
& \text { unfold }::(a \rightarrow F a) \rightarrow a \rightarrow \mu F \\
& \text { unfold } \psi=i n_{F} \circ F(\text { unfold } \psi) \circ \psi
\end{aligned}
$$

Unfold: Lists

$$
\begin{aligned}
& \text { unfold }_{L}::\left(b \rightarrow L_{a} b\right) \rightarrow b \rightarrow \text { List } a \\
& \text { unfold }_{L} \psi b=\text { case }(\psi b) \text { of } \\
& \text { Left () } \rightarrow \text { Nil } \\
& \left.\operatorname{Right}\left(a, b^{\prime}\right) \rightarrow \text { Cons a } \text { unfold }_{L} \psi b^{\prime}\right)
\end{aligned}
$$

Example:

$$
\begin{aligned}
& \text { upto }:: \text { Int } \rightarrow \text { Int } \\
& \text { upto } n \mid n<1=\text { Nil } \\
& \\
& \mid \text { otherwise }=\text { Cons } n(\text { upto }(n-1))
\end{aligned}
$$

As an unfold,

$$
\begin{aligned}
& \text { upto }=\text { unfold }_{L} \psi \\
& \text { where } \\
& \qquad \begin{array}{l}
\psi n<1=\operatorname{Left}() \\
\mid \text { otherwise }=\operatorname{Right}(n, n-1)
\end{array}
\end{aligned}
$$

Factorisation

$$
\text { hylo } \varphi \psi=\text { fold } \varphi \circ \text { unfold } \psi
$$

Factorisation: factorial

$$
\begin{aligned}
& \text { fact }=\text { prod } \circ \text { upto } \\
& \text { prod }:: \text { List Int } \rightarrow \text { Int } \\
& \text { prod Nil }=1 \\
& \text { prod }(\text { Cons } n \text { ns })=n * \text { prod ns } \\
& \text { upto }:: \text { Int } \rightarrow \text { Int } \\
& \text { upto } n \mid n<1=\text { Nil } \\
& \mid \text { otherwise }=\text { Cons } n(\text { upto }(n-1))
\end{aligned}
$$

Applying factorisation,

$$
\begin{aligned}
& \text { fact }:: \text { Int } \rightarrow \text { Int } \\
& \text { fact } n \mid n<1=1 \\
& \quad \mid \text { otherwise }=n * \text { fact }(n-1)
\end{aligned}
$$

Factorisation: quicksort

$$
\begin{aligned}
& \text { qsort }:: \text { Ord } a \Rightarrow[a] \rightarrow[a] \\
& \text { qsort }=\text { inorder } \circ m k \text { Tree }
\end{aligned}
$$

inorder :: Tree $a \rightarrow$ List a
inorder Empty $=$ Nil
inorder $\left(\right.$ Node t a $\left.t^{\prime}\right)=$ inorder $t+[a]+$ inorder t^{\prime}
$m k T r e e::$ Ord $a \Rightarrow[a] \rightarrow$ Tree a
mkTree [] = Empty
$m k T r e e(a: a s)=\operatorname{Node}(m k T r e e[x \mid x \leftarrow a s ; x \leqslant a])$
a
$(m k$ Tree $[x \mid x \leftarrow a s ; x>a])$

Quicksort

$$
\begin{aligned}
& \text { qsort }:: \text { Ord } a \Rightarrow {[a] \rightarrow[a] } \\
& \text { qsort }[]=[] \\
& \text { qsort }(a: a s)= \\
& \quad \operatorname{sort}[x \mid x \leftarrow a s ; x \leqslant a] \\
&+[a]+ \\
& \operatorname{qsort}[x \mid x \leftarrow a s ; x>a]
\end{aligned}
$$

Fusion laws

Factorisation

Hylo-Fold Fusion

$$
\begin{aligned}
& \tau:: \forall a \cdot(F a \rightarrow a) \rightarrow(G a \rightarrow a) \\
\Rightarrow &
\end{aligned}
$$

$$
\text { fold } \varphi \circ \text { hylo }\left(\tau i n_{F}\right) \psi=\text { hylo }(\tau \varphi) \psi
$$

Unfold-Hylo Fusion

$$
\begin{array}{ll}
& \sigma::(a \rightarrow F a) \rightarrow(a \rightarrow G a) \\
\Rightarrow & \\
& \text { hylo } \varphi\left(\sigma \text { out }_{F}\right) \circ \text { unfold } \psi=\text { hylo } \varphi(\sigma \psi)
\end{array}
$$

Hylo-Fold Fusion

data Maybe $a=$ Nothing \mid Just a

```
mapcoll \(::(a \rightarrow b) \rightarrow\) List (Maybe \(a) \rightarrow\) List \(b\)
mapcoll \(=\) map \(f \circ\) collect
```

map f Nil $=$ Nil
$\operatorname{map} f($ Cons a as $)=\operatorname{Cons}(f a)($ map $f a s)$
collect :: List (Maybe Int) \rightarrow List Int
collect Nil $=$ Nil
collect (Cons $m \mathrm{~ms}$) $=$ case m of
Nothing \rightarrow collect ms
Just $a \rightarrow$ Cons $a($ collect $m s)$

Hylo-Fold Fusion

$$
\begin{array}{r}
\tau::(b, a \rightarrow b \rightarrow b) \rightarrow(b, \text { Maybe } a \rightarrow b \rightarrow b) \\
\tau\left(h_{1}, h_{2}\right)=\left(h_{1},\right. \\
\lambda m b \rightarrow \text { case } m \text { of } \\
\quad \text { Nothing } \rightarrow b \\
\left.\quad \text { Just } a \rightarrow h_{2} a b\right)
\end{array}
$$

Applying hylo-fold fusion,

$$
\begin{aligned}
& \text { mapcoll }::(a \rightarrow b) \rightarrow \text { List }(\text { Maybe } a) \rightarrow \text { List } b \\
& \text { mapcoll } f \text { Nil }=\text { Nil } \\
& \text { mapcoll } f(\text { Cons } m \text { ms })=\text { case } m \text { of } \\
& \\
& \quad \text { Nothing } \rightarrow \text { mapcoll } f \text { ms } \\
& \\
& \quad \text { Just } a \rightarrow \text { Cons }\left(\begin{array}{ll}
f & a
\end{array}\right)(\text { mapcoll } f \text { ms })
\end{aligned}
$$

HFusion

- HFusion is an extension of the HYLO system:
- University of Tokyo, 1997-98
- MIT, 2000, in the context of pH (parallel Haskell)
- HFusion is implemented in Haskell.
- It can be used in three different modalities:
- Command line
- Web interface
- Inside HaRe (Haskell Refactorer)

Web access:
http://www.fing.edu.uy/inco/proyectos/fusion/tool/

